1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Symbolication strategy using the DWARF-parsing code in libbacktrace.
//!
//! The libbacktrace C library, typically distributed with gcc, supports not
//! only generating a backtrace (which we don't actually use) but also
//! symbolicating the backtrace and handling dwarf debug information about
//! things like inlined frames and whatnot.
//!
//! This is relatively complicated due to lots of various concerns here, but the
//! basic idea is:
//!
//! * First we call `backtrace_syminfo`. This gets symbol information from the
//!   dynamic symbol table if we can.
//! * Next we call `backtrace_pcinfo`. This will parse debuginfo tables if
//!   they're available and allow us to recover information about inline frames,
//!   filenames, line numbers, etc.
//!
//! There's lots of trickery about getting the dwarf tables into libbacktrace,
//! but hopefully it's not the end of the world and is clear enough when reading
//! below.
//!
//! This is the default symbolication strategy for non-MSVC and non-OSX
//! platforms. In libstd though this is the default strategy for OSX.

#![allow(bad_style)]

extern crate backtrace_sys as bt;

use core::{ptr, slice};
use libc::{self, c_char, c_int, c_void, uintptr_t};

use crate::symbolize::dladdr;
use crate::symbolize::{ResolveWhat, SymbolName};
use crate::types::BytesOrWideString;

pub enum Symbol<'a> {
    Syminfo {
        pc: uintptr_t,
        symname: *const c_char,
    },
    Pcinfo {
        pc: uintptr_t,
        filename: *const c_char,
        lineno: c_int,
        function: *const c_char,
        symname: *const c_char,
    },
    Dladdr(dladdr::Symbol<'a>),
}

impl Symbol<'_> {
    pub fn name(&self) -> Option<SymbolName> {
        let symbol = |ptr: *const c_char| unsafe {
            if ptr.is_null() {
                None
            } else {
                let len = libc::strlen(ptr);
                Some(SymbolName::new(slice::from_raw_parts(
                    ptr as *const u8,
                    len,
                )))
            }
        };
        match *self {
            Symbol::Syminfo { symname, .. } => symbol(symname),
            Symbol::Pcinfo {
                function, symname, ..
            } => {
                // If possible prefer the `function` name which comes from
                // debuginfo and can typically be more accurate for inline
                // frames for example. If that's not present though fall back to
                // the symbol table name specified in `symname`.
                //
                // Note that sometimes `function` can feel somewhat less
                // accurate, for example being listed as `try<i32,closure>`
                // isntead of `std::panicking::try::do_call`. It's not really
                // clear why, but overall the `function` name seems more accurate.
                if let Some(sym) = symbol(function) {
                    return Some(sym);
                }
                symbol(symname)
            }
            Symbol::Dladdr(ref s) => s.name(),
        }
    }

    pub fn addr(&self) -> Option<*mut c_void> {
        let pc = match *self {
            Symbol::Syminfo { pc, .. } => pc,
            Symbol::Pcinfo { pc, .. } => pc,
            Symbol::Dladdr(ref s) => return s.addr(),
        };
        if pc == 0 {
            None
        } else {
            Some(pc as *mut _)
        }
    }

    fn filename_bytes(&self) -> Option<&[u8]> {
        match *self {
            Symbol::Syminfo { .. } => None,
            Symbol::Pcinfo { filename, .. } => {
                let ptr = filename as *const u8;
                unsafe {
                    let len = libc::strlen(filename);
                    Some(slice::from_raw_parts(ptr, len))
                }
            }
            Symbol::Dladdr(_) => None,
        }
    }

    pub fn filename_raw(&self) -> Option<BytesOrWideString> {
        self.filename_bytes().map(BytesOrWideString::Bytes)
    }

    #[cfg(feature = "std")]
    pub fn filename(&self) -> Option<&::std::path::Path> {
        use std::path::Path;

        #[cfg(unix)]
        fn bytes2path(bytes: &[u8]) -> Option<&Path> {
            use std::ffi::OsStr;
            use std::os::unix::prelude::*;
            Some(Path::new(OsStr::from_bytes(bytes)))
        }

        #[cfg(windows)]
        fn bytes2path(bytes: &[u8]) -> Option<&Path> {
            use std::str;
            str::from_utf8(bytes).ok().map(Path::new)
        }

        self.filename_bytes().and_then(bytes2path)
    }

    pub fn lineno(&self) -> Option<u32> {
        match *self {
            Symbol::Syminfo { .. } => None,
            Symbol::Pcinfo { lineno, .. } => Some(lineno as u32),
            Symbol::Dladdr(ref s) => s.lineno(),
        }
    }
}

extern "C" fn error_cb(_data: *mut c_void, _msg: *const c_char, _errnum: c_int) {
    // do nothing for now
}

/// Type of the `data` pointer passed into `syminfo_cb`
struct SyminfoState<'a> {
    cb: &'a mut (FnMut(&super::Symbol) + 'a),
    pc: usize,
}

extern "C" fn syminfo_cb(
    data: *mut c_void,
    pc: uintptr_t,
    symname: *const c_char,
    _symval: uintptr_t,
    _symsize: uintptr_t,
) {
    let mut bomb = crate::Bomb { enabled: true };

    // Once this callback is invoked from `backtrace_syminfo` when we start
    // resolving we go further to call `backtrace_pcinfo`. The
    // `backtrace_pcinfo` function will consult debug information and attemp tto
    // do things like recover file/line information as well as inlined frames.
    // Note though that `backtrace_pcinfo` can fail or not do much if there's
    // not debug info, so if that happens we're sure to call the callback with
    // at least one symbol from the `syminfo_cb`.
    unsafe {
        let syminfo_state = &mut *(data as *mut SyminfoState);
        let mut pcinfo_state = PcinfoState {
            symname,
            called: false,
            cb: syminfo_state.cb,
        };
        bt::backtrace_pcinfo(
            init_state(),
            syminfo_state.pc as uintptr_t,
            pcinfo_cb,
            error_cb,
            &mut pcinfo_state as *mut _ as *mut _,
        );
        if !pcinfo_state.called {
            (pcinfo_state.cb)(&super::Symbol {
                inner: Symbol::Syminfo {
                    pc: pc,
                    symname: symname,
                },
            });
        }
    }

    bomb.enabled = false;
}

/// Type of the `data` pointer passed into `pcinfo_cb`
struct PcinfoState<'a> {
    cb: &'a mut (FnMut(&super::Symbol) + 'a),
    symname: *const c_char,
    called: bool,
}

extern "C" fn pcinfo_cb(
    data: *mut c_void,
    pc: uintptr_t,
    filename: *const c_char,
    lineno: c_int,
    function: *const c_char,
) -> c_int {
    if filename.is_null() || function.is_null() {
        return -1;
    }
    let mut bomb = crate::Bomb { enabled: true };

    unsafe {
        let state = &mut *(data as *mut PcinfoState);
        state.called = true;
        (state.cb)(&super::Symbol {
            inner: Symbol::Pcinfo {
                pc: pc,
                filename: filename,
                lineno: lineno,
                symname: state.symname,
                function,
            },
        });
    }

    bomb.enabled = false;
    return 0;
}

// The libbacktrace API supports creating a state, but it does not
// support destroying a state. I personally take this to mean that a
// state is meant to be created and then live forever.
//
// I would love to register an at_exit() handler which cleans up this
// state, but libbacktrace provides no way to do so.
//
// With these constraints, this function has a statically cached state
// that is calculated the first time this is requested. Remember that
// backtracing all happens serially (one global lock).
//
// Note the lack of synchronization here is due to the requirement that
// `resolve` is externally synchronized.
unsafe fn init_state() -> *mut bt::backtrace_state {
    static mut STATE: *mut bt::backtrace_state = 0 as *mut _;

    if !STATE.is_null() {
        return STATE;
    }

    STATE = bt::backtrace_create_state(
        load_filename(),
        // Don't exercise threadsafe capabilities of libbacktrace since
        // we're always calling it in a synchronized fashion.
        0,
        error_cb,
        ptr::null_mut(), // no extra data
    );

    return STATE;

    // Note that for libbacktrace to operate at all it needs to find the DWARF
    // debug info for the current executable. It typically does that via a
    // number of mechanisms including, but not limited to:
    //
    // * /proc/self/exe on supported platforms
    // * The filename passed in explicitly when creating state
    //
    // The libbacktrace library is a big wad of C code. This naturally means
    // it's got memory safety vulnerabilities, especially when handling
    // malformed debuginfo. Libstd has run into plenty of these historically.
    //
    // If /proc/self/exe is used then we can typically ignore these as we
    // assume that libbacktrace is "mostly correct" and otherwise doesn't do
    // weird things with "attempted to be correct" dwarf debug info.
    //
    // If we pass in a filename, however, then it's possible on some platforms
    // (like BSDs) where a malicious actor can cause an arbitrary file to be
    // placed at that location. This means that if we tell libbacktrace about a
    // filename it may be using an arbitrary file, possibly causing segfaults.
    // If we don't tell libbacktrace anything though then it won't do anything
    // on platforms that don't support paths like /proc/self/exe!
    //
    // Given all that we try as hard as possible to *not* pass in a filename,
    // but we must on platforms that don't support /proc/self/exe at all.
    cfg_if::cfg_if! {
        if #[cfg(any(target_os = "macos", target_os = "ios"))] {
            // Note that ideally we'd use `std::env::current_exe`, but we can't
            // require `std` here.
            //
            // Use `_NSGetExecutablePath` to load the current executable path
            // into a static area (which if it's too small just give up).
            //
            // Note that we're seriously trusting libbacktrace here to not die
            // on corrupt executables, but it surely does...
            unsafe fn load_filename() -> *const libc::c_char {
                const N: usize = 256;
                static mut BUF: [u8; N] = [0; N];
                extern {
                    fn _NSGetExecutablePath(
                        buf: *mut libc::c_char,
                        bufsize: *mut u32,
                    ) -> libc::c_int;
                }
                let mut sz: u32 = BUF.len() as u32;
                let ptr = BUF.as_mut_ptr() as *mut libc::c_char;
                if _NSGetExecutablePath(ptr, &mut sz) == 0 {
                    ptr
                } else {
                    ptr::null()
                }
            }
        } else if #[cfg(windows)] {
            use crate::windows::*;

            // Windows has a mode of opening files where after it's opened it
            // can't be deleted. That's in general what we want here because we
            // want to ensure that our executable isn't changing out from under
            // us after we hand it off to libbacktrace, hopefully mitigating the
            // ability to pass in arbitrary data into libbacktrace (which may be
            // mishandled).
            //
            // Given that we do a bit of a dance here to attempt to get a sort
            // of lock on our own image:
            //
            // * Get a handle to the current process, load its filename.
            // * Open a file to that filename with the right flags.
            // * Reload the current process's filename, making sure it's the same
            //
            // If that all passes we in theory have indeed opened our process's
            // file and we're guaranteed it won't change. FWIW a bunch of this
            // is copied from libstd historically, so this is my best
            // interpretation of what was happening.
            unsafe fn load_filename() -> *const libc::c_char {
                load_filename_opt().unwrap_or(ptr::null())
            }

            unsafe fn load_filename_opt() -> Result<*const libc::c_char, ()> {
                const N: usize = 256;
                // This lives in static memory so we can return it..
                static mut BUF: [i8; N] = [0; N];
                // ... and this lives on the stack since it's temporary
                let mut stack_buf = [0; N];
                let name1 = query_full_name(&mut BUF)?;

                let handle = CreateFileA(
                    name1.as_ptr(),
                    GENERIC_READ,
                    FILE_SHARE_READ | FILE_SHARE_WRITE,
                    ptr::null_mut(),
                    OPEN_EXISTING,
                    0,
                    ptr::null_mut(),
                );
                if handle.is_null() {
                    return Err(());
                }

                let name2 = query_full_name(&mut stack_buf)?;
                if name1 != name2 {
                    CloseHandle(handle);
                    return Err(())
                }
                // intentionally leak `handle` here because having that open
                // should preserve our lock on this file name.
                Ok(name1.as_ptr())
            }

            unsafe fn query_full_name(buf: &mut [i8]) -> Result<&[i8], ()> {
                let dll = GetModuleHandleA(b"kernel32.dll\0".as_ptr() as *const i8);
                if dll.is_null() {
                    return Err(())
                }
                let ptrQueryFullProcessImageNameA =
                    GetProcAddress(dll, b"QueryFullProcessImageNameA\0".as_ptr() as *const _) as usize;
                if ptrQueryFullProcessImageNameA == 0
                {
                    return Err(());
                }
                use core::mem;
                let p1 = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, GetCurrentProcessId());
                let mut len = buf.len() as u32;
                let pfnQueryFullProcessImageNameA : extern "system" fn(
                    hProcess: HANDLE,
                    dwFlags: DWORD,
                    lpExeName: LPSTR,
                    lpdwSize: PDWORD,
                ) -> BOOL = mem::transmute(ptrQueryFullProcessImageNameA);

                let rc = pfnQueryFullProcessImageNameA(p1, 0, buf.as_mut_ptr(), &mut len);
                CloseHandle(p1);

                // We want to return a slice that is nul-terminated, so if
                // everything was filled in and it equals the total length
                // then equate that to failure.
                //
                // Otherwise when returning success make sure the nul byte is
                // included in the slice.
                if rc == 0 || len == buf.len() as u32 {
                    Err(())
                } else {
                    assert_eq!(buf[len as usize], 0);
                    Ok(&buf[..(len + 1) as usize])
                }
            }
        } else if #[cfg(target_os = "vxworks")] {
            unsafe fn load_filename() -> *const libc::c_char {
                use libc;
                use core::mem;

                const N: usize = libc::VX_RTP_NAME_LENGTH as usize + 1;
                static mut BUF: [libc::c_char; N] = [0; N];

                let mut rtp_desc : libc::RTP_DESC = mem::zeroed();
                if (libc::rtpInfoGet(0, &mut rtp_desc as *mut libc::RTP_DESC) == 0) {
                    BUF.copy_from_slice(&rtp_desc.pathName);
                    BUF.as_ptr()
                } else {
                    ptr::null()
                }
            }
        } else {
            unsafe fn load_filename() -> *const libc::c_char {
                ptr::null()
            }
        }
    }
}

pub unsafe fn resolve(what: ResolveWhat, cb: &mut FnMut(&super::Symbol)) {
    let symaddr = what.address_or_ip() as usize;

    // backtrace errors are currently swept under the rug
    let state = init_state();
    if state.is_null() {
        return dladdr_fallback(what.address_or_ip(), cb);
    }

    // Call the `backtrace_syminfo` API first. This is (from reading the code)
    // guaranteed to call `syminfo_cb` exactly once (or fail with an error
    // presumably). We then handle more within the `syminfo_cb`.
    //
    // Note that we do this since `syminfo` will consult the symbol table,
    // finding symbol names even if there's no debug information in the binary.
    let mut called = false;
    {
        let mut syminfo_state = SyminfoState {
            pc: symaddr,
            cb: &mut |sym| {
                called = true;
                cb(sym);
            },
        };
        bt::backtrace_syminfo(
            state,
            symaddr as uintptr_t,
            syminfo_cb,
            error_cb,
            &mut syminfo_state as *mut _ as *mut _,
        );
    }

    if !called {
        dladdr_fallback(what.address_or_ip(), cb);
    }
}

unsafe fn dladdr_fallback(addr: *mut c_void, cb: &mut FnMut(&super::Symbol)) {
    dladdr::resolve(addr, &mut |sym| {
        cb(&super::Symbol {
            inner: Symbol::Dladdr(sym),
        })
    });
}