1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
use std::cmp; use std::fmt; use std::mem; use std::u16; use std::usize; use packed::api::MatchKind; /// The type used for representing a pattern identifier. /// /// We don't use `usize` here because our packed searchers don't scale to /// huge numbers of patterns, so we keep things a bit smaller. pub type PatternID = u16; /// A non-empty collection of non-empty patterns to search for. /// /// This collection of patterns is what is passed around to both execute /// searches and to construct the searchers themselves. Namely, this permits /// searches to avoid copying all of the patterns, and allows us to keep only /// one copy throughout all packed searchers. /// /// Note that this collection is not a set. The same pattern can appear more /// than once. #[derive(Clone, Debug)] pub struct Patterns { /// The match semantics supported by this collection of patterns. /// /// The match semantics determines the order of the iterator over patterns. /// For leftmost-first, patterns are provided in the same order as were /// provided by the caller. For leftmost-longest, patterns are provided in /// descending order of length, with ties broken by the order in which they /// were provided by the caller. kind: MatchKind, /// The collection of patterns, indexed by their identifier. by_id: Vec<Vec<u8>>, /// The order of patterns defined for iteration, given by pattern /// identifiers. The order of `by_id` and `order` is always the same for /// leftmost-first semantics, but may be different for leftmost-longest /// semantics. order: Vec<PatternID>, /// The length of the smallest pattern, in bytes. minimum_len: usize, /// The largest pattern identifier. This should always be equivalent to /// the number of patterns minus one in this collection. max_pattern_id: PatternID, /// The total number of pattern bytes across the entire collection. This /// is used for reporting total heap usage in constant time. total_pattern_bytes: usize, } impl Patterns { /// Create a new collection of patterns for the given match semantics. The /// ID of each pattern is the index of the pattern at which it occurs in /// the `by_id` slice. /// /// If any of the patterns in the slice given are empty, then this panics. /// Similarly, if the number of patterns given is zero, then this also /// panics. pub fn new() -> Patterns { Patterns { kind: MatchKind::default(), by_id: vec![], order: vec![], minimum_len: usize::MAX, max_pattern_id: 0, total_pattern_bytes: 0, } } /// Add a pattern to this collection. /// /// This panics if the pattern given is empty. pub fn add(&mut self, bytes: &[u8]) { assert!(!bytes.is_empty()); assert!(self.by_id.len() <= u16::MAX as usize); let id = self.by_id.len() as u16; self.max_pattern_id = id; self.order.push(id); self.by_id.push(bytes.to_vec()); self.minimum_len = cmp::min(self.minimum_len, bytes.len()); self.total_pattern_bytes += bytes.len(); } /// Set the match kind semantics for this collection of patterns. /// /// If the kind is not set, then the default is leftmost-first. pub fn set_match_kind(&mut self, kind: MatchKind) { match kind { MatchKind::LeftmostFirst => { self.order.sort(); } MatchKind::LeftmostLongest => { let (order, by_id) = (&mut self.order, &mut self.by_id); order.sort_by(|&id1, &id2| { by_id[id1 as usize] .len() .cmp(&by_id[id2 as usize].len()) .reverse() }); } MatchKind::__Nonexhaustive => unreachable!(), } } /// Return the number of patterns in this collection. /// /// This is guaranteed to be greater than zero. pub fn len(&self) -> usize { self.by_id.len() } /// Returns true if and only if this collection of patterns is empty. pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns the approximate total amount of heap used by these patterns, in /// units of bytes. pub fn heap_bytes(&self) -> usize { self.order.len() * mem::size_of::<PatternID>() + self.by_id.len() * mem::size_of::<Vec<u8>>() + self.total_pattern_bytes } /// Clears all heap memory associated with this collection of patterns and /// resets all state such that it is a valid empty collection. pub fn reset(&mut self) { self.kind = MatchKind::default(); self.by_id.clear(); self.order.clear(); self.minimum_len = usize::MAX; self.max_pattern_id = 0; } /// Return the maximum pattern identifier in this collection. This can be /// useful in searchers for ensuring that the collection of patterns they /// are provided at search time and at build time have the same size. pub fn max_pattern_id(&self) -> PatternID { assert_eq!((self.max_pattern_id + 1) as usize, self.len()); self.max_pattern_id } /// Returns the length, in bytes, of the smallest pattern. /// /// This is guaranteed to be at least one. pub fn minimum_len(&self) -> usize { self.minimum_len } /// Returns the match semantics used by these patterns. pub fn match_kind(&self) -> &MatchKind { &self.kind } /// Return the pattern with the given identifier. If such a pattern does /// not exist, then this panics. pub fn get(&self, id: PatternID) -> Pattern { Pattern(&self.by_id[id as usize]) } /// Return the pattern with the given identifier without performing bounds /// checks. /// /// # Safety /// /// Callers must ensure that a pattern with the given identifier exists /// before using this method. #[cfg(target_arch = "x86_64")] pub unsafe fn get_unchecked(&self, id: PatternID) -> Pattern { Pattern(self.by_id.get_unchecked(id as usize)) } /// Return an iterator over all the patterns in this collection, in the /// order in which they should be matched. /// /// Specifically, in a naive multi-pattern matcher, the following is /// guaranteed to satisfy the match semantics of this collection of /// patterns: /// /// ```ignore /// for i in 0..haystack.len(): /// for p in patterns.iter(): /// if haystack[i..].starts_with(p.bytes()): /// return Match(p.id(), i, i + p.bytes().len()) /// ``` /// /// Namely, among the patterns in a collection, if they are matched in /// the order provided by this iterator, then the result is guaranteed /// to satisfy the correct match semantics. (Either leftmost-first or /// leftmost-longest.) pub fn iter(&self) -> PatternIter { PatternIter { patterns: self, i: 0 } } } /// An iterator over the patterns in the `Patterns` collection. /// /// The order of the patterns provided by this iterator is consistent with the /// match semantics of the originating collection of patterns. /// /// The lifetime `'p` corresponds to the lifetime of the collection of patterns /// this is iterating over. #[derive(Debug)] pub struct PatternIter<'p> { patterns: &'p Patterns, i: usize, } impl<'p> Iterator for PatternIter<'p> { type Item = (PatternID, Pattern<'p>); fn next(&mut self) -> Option<(PatternID, Pattern<'p>)> { if self.i >= self.patterns.len() { return None; } let id = self.patterns.order[self.i]; let p = self.patterns.get(id); self.i += 1; Some((id, p)) } } /// A pattern that is used in packed searching. #[derive(Clone)] pub struct Pattern<'a>(&'a [u8]); impl<'a> fmt::Debug for Pattern<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("Pattern") .field("lit", &String::from_utf8_lossy(&self.0)) .finish() } } impl<'p> Pattern<'p> { /// Returns the length of this pattern, in bytes. pub fn len(&self) -> usize { self.0.len() } /// Returns the bytes of this pattern. pub fn bytes(&self) -> &[u8] { &self.0 } /// Returns the first `len` low nybbles from this pattern. If this pattern /// is shorter than `len`, then this panics. #[cfg(target_arch = "x86_64")] pub fn low_nybbles(&self, len: usize) -> Vec<u8> { let mut nybs = vec![]; for &b in self.bytes().iter().take(len) { nybs.push(b & 0xF); } nybs } /// Returns true if this pattern is a prefix of the given bytes. #[inline(always)] pub fn is_prefix(&self, bytes: &[u8]) -> bool { self.len() <= bytes.len() && self.equals(&bytes[..self.len()]) } /// Returns true if and only if this pattern equals the given bytes. #[inline(always)] pub fn equals(&self, bytes: &[u8]) -> bool { // Why not just use memcmp for this? Well, memcmp requires calling out // to libc, and this routine is called in fairly hot code paths. Other // than just calling out to libc, it also seems to result in worse // codegen. By rolling our own memcpy in pure Rust, it seems to appear // more friendly to the optimizer. // // This results in an improvement in just about every benchmark. Some // smaller than others, but in some cases, up to 30% faster. if self.len() != bytes.len() { return false; } if self.len() < 8 { for (&b1, &b2) in self.bytes().iter().zip(bytes) { if b1 != b2 { return false; } } return true; } // When we have 8 or more bytes to compare, then proceed in chunks of // 8 at a time using unaligned loads. let mut p1 = self.bytes().as_ptr(); let mut p2 = bytes.as_ptr(); let p1end = self.bytes()[self.len() - 8..].as_ptr(); let p2end = bytes[bytes.len() - 8..].as_ptr(); // SAFETY: Via the conditional above, we know that both `p1` and `p2` // have the same length, so `p1 < p1end` implies that `p2 < p2end`. // Thus, derefencing both `p1` and `p2` in the loop below is safe. // // Moreover, we set `p1end` and `p2end` to be 8 bytes before the actual // end of of `p1` and `p2`. Thus, the final dereference outside of the // loop is guaranteed to be valid. // // Finally, we needn't worry about 64-bit alignment here, since we // do unaligned loads. unsafe { while p1 < p1end { let v1 = (p1 as *const u64).read_unaligned(); let v2 = (p2 as *const u64).read_unaligned(); if v1 != v2 { return false; } p1 = p1.add(8); p2 = p2.add(8); } let v1 = (p1end as *const u64).read_unaligned(); let v2 = (p2end as *const u64).read_unaligned(); v1 == v2 } } }